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Abstract - Clutter plays a very important role in the 
area of machine and human-in-the-loop target 
acquisition.  A great deal of interest has recently 
been shown in assessing several different definitions 
of clutter.  In spite of so many definitions available, 
no single clutter definition has been agreed on by the 
target acquisition modeling community as being the 
best.  In this paper, we develop a new clutter metric, 
called relative clutter, based on factor analysis which 
is extensively used for statistical analysis.  This 
relative clutter combines many definitions of clutter.  
Different methods for calculating the relative clutter 
based on the magnitude of the eigenvalues obtained 
from the correlation matrix are suggested in this 
paper.  The relative clutter of many images is 
analyzed.  The relative clutter is used to calculate 
probability of detection on Night Vision Lab (NVL) 
Terrain Board Infrared (IR) images 
 
 
Index Terms-clutter, signal-to noise-ratio, image processing, 
human perception, computer vision, automatic target 
recognition (ATR). 
 

I. Introduction 
 There are many definitions of clutter currently used in 
the literature of image processing and target acquisition 
modeling.[1,2,3,4,5,6]  Some of these metrics are listed below; 
 
 mean radiance or ΔT metric 
 statistical variance metric 
 probability of edge metric 
 complexity metrics 
 
 
There is no definition which is clearly the best in all cases for 
the ATR community.  The object of this paper is to give a 
unified definition of clutter which takes into account the 
different definitions available in the literature.  The present 
study is meant serve as a proof of principle study.  The images 
used for this study were obtained from the Army’s NVL 
Terrain board simulator.  The clutter metrics combined in this 
study to form a relative clutter metric are the following 
 
 Der  metric 

 POE metric 
 Scheider-Weathersby metric 
 Mean radiance 
 Standard deviation of background 
 
 
a)Der Clutter Metric 
 Originally the Der metric was devised as a method 
that could be used to predict the false alarm rate of a given 
algorithm.  The approach was the following: a double window 
was convolved one pixel at a time over the image.  The size of 
the inner window was the maximum size of the largest target 
we were using at the time.  These two features, minimum and 
maximum, were chosen arbitrarily.  At each pixel location the 
algorithm decides whether the new pixel is in the same 
intensity space as the one previously examined and then also 
whether it fits into the inner window.  When an intense region 
of the image of approximate target size is found, that region is 
catalogued.  The principle behind the Der method is to then 
multiply the distribution of the target -like areas by the 
probability of detection distribution.  The result should then 
give the predicted false alarm rate for an algorithm with a 
given probability of detection distribution.  Now if one simply 
counts the number of Der objects in the image, that number 
should indicate the number of target-like objects in the scene, 
hence, a measure of clutter. 
 
 
b)POE Metric 
 The Probability of Edge metric is meant to  determine 
the relationship between the human visual detection system and 
the statistics of the color or black and white images.  First, the 
image under consideration is processed with a difference of 
Gaussian (DOOG) filters and is thresholded.  This procedure is 
intended to emulate the early vision part of the human.[5]  
Then the number of edge points are counted and are used as the 
raw metric.  The procedure for calculation proceeds as follows: 
first the image is divided into blocks twice the apparent size of 
the target in each dimension.  Then a DOOG filter as described 
in [11] is applied to each block to emulate one of the channels 
in preattentive vision with the net effect being to enhance the 
edges.  As discussed in [5] the histogram of the of the 
processed image is normalized and then a threshold, T, is 
chosen based on the histogram.  The number of points that 
exceed the threshold in the i’th block are computed as POEi,T.  
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The POE metric is then computed in a manner similar to the 
statistical variance technique,  
 

 POE
N

POEi T
i

N

=
=
∑1 2

1
,  .  (1) 

 
As the authors in [5] point out, it is known by the work of Marr 
[12] and other vision researchers that preattentive vision is 
highly sensitive to edges.  
 
c) Schmieder and Weathersby metric 
 
 Schmieder and Weathersby [1] have proposed the 
concept of a RMS clutter metric of the spatial-intensity 
properties of the background. To date it is the most commonly 
used clutter measure.  The Schmieder and Weathersby clutter 
metric is computed by averaging the variance of contiguous 
square cells over the whole scene: 
 

 clutter
N i

i

N

=
=
∑1 2

1

σ   (2) 

where is the variance of pixels within the ith cell, and N is 
the number of cells or blocks the picture has been divided into.  
Typically N is defined to be twice the length of the largest 
target dimension.  The signal-to-clutter ratio (SCR) of the 
image is then given by the average contrast of the target 
divided by the clutter in (2). 

σ i
2

 
The variance in (2) has been shown in [2] to be equivalent to, 
 

 σ i ij iK
X U2 21

= −∑c h  (3) 

 
where K is the number of pixels per cell, Xij is the radiance of 
the j’th pixel in the i’th cell, 
and Ui is the i’th cell mean radiance. 
 
It has been noticed [13] that equation (2) was compared by 
Schmieder and Weathersby with experimental detection times 
for observers looking at computer generated images of rural 
scenes with embedded targets.  A good correlation between the 
average detection time and SCR value was found. 
 
By way of comparison, the mean and standard deviation of the 
background were also taken as clutter measures.: 
 
c) mean of background 
 
d) standard deviation of background 
 
 
 The original data is shown in Tables I.  There were 24 
images in total.  The images were taken using the terrain board 
simulator of the US Army NVL in Ft. Belvoir, VA.  The  
image set had three types of clutter and each image had Army 

vehicles in it of different sizes.  The total image size is 
512x512 pixels.  We used factor analysis to obtain a relative 
clutter based on the aforementioned 4 definitions (a-d) of 
clutter. This new definition of clutter, we hope, can be 
expanded to encompass all the current existing definitions and 
act as a common denominator for them. 
 

II. Method 
 For convenience the algorithm for relative clutter is 
summarized as follows; 
• Read the input matrix, M 
• Find the correlation matrix, R 
• Calculate the Eigenvectors and Eigenvalues, 
• Loading = sqrt(eigenvalues)*eigenvectors, 
• Perform a Varimax rotation to get the rotated factor 

loading matrix, 
• Define an L matrix to be the variance of the rotated factor 

loading matrix, 
• Compute the inverse correlation matrix, R-1  
• Compute T = (R-1  )* Fr 
• Determine normalized Matrix and name it as Z, 
• Compute Z*T, 
• The relative complexity values Crel = Z*T*LT. 
 
 By way of example of the flow of the algorithm for he 
computation of relative clutter, Table II shows the correlation 
matrix of the high noise case.  Table III shows the 
corresponding eigenvector matrix and Table IV shows the 
loading factors before and after Varimax rotation with 2 
loading factors.  Table V shows the normalized Varimax 
adjusted clutter values and Table VI shows the rotated 
variances which lead to the relative clutter values.  Table VII 
shows the final clutter metrics.   
 

Algorithm: Factor Analysis 
 
 Factor analysis is a generic name given to a  branch of 
statistics whose primary purpose is data reduction and 
summarization.  Generally speaking, factor analysis confines 
itself to the problem of analyzing the interrelationships among 
a large number of variables(e.g., clutter values, clutter types, 
and observer responses) and then explaining these variables in 
terms of their underlying dimensions or factors.  Factor 
analysis is an interdependence technique I which all variables 
are considered simultaneously.  Each of the observed variables, 
clutter metric in this case, is considered as a dependent variable 
that is dependent on some more fundamental set of factors.  In 
this paper, the factor analysis is applied to the covariant 
relationship among different clutter metrics in terms of a few 
underlying factors.  Perception metrics in general, and 
specifically clutter metrics, can be grouped by their correlation, 
i.e. all metrics within the particular group are highly correlated 
among themselves but have relatively small correlation with 
metrics in a different group.  In which case each group of 
variables represents a single underlying factor, which is 
responsible for the observed correlation.  The factor analytic 



procedure will be shown to serve as a basis for the 
development of a relative clutter metric. 
 
 Factor analysis is usually concerned with two major 
problems: 
 
1) Reducing the dimensionality of the original data space, 
whether by principal components or some other factoring 
procedure- 
 
2) Rotation of the factor loading solution in the reduced space 
to some more interpretable 
orientation and recomputation of factor scores in the new 
orientation.   
 
The correlation matrix, which indicates the relationships 
among the variables, is a fundamental element in factor 
analysis.  Since R is symmetric, all distinct eigenvectors are 
real and orthogonal, and its singular value decomposition has 
the form as follows: 
 
 R = U*D*UT 

 
where U is an orthogonal matrix(UU'=U'U=I), whose columns 
are the eigenvectors of R, and D is a diagonal matrix whose 
entries are the eigenvalues of R.  Since R is a product moment 
matrix, all diagonal entries of D are nonnegative. 
 
The whole matrix of factor loadings can be found from the 
matrix product: 
 
 F = U*D 1/2 
 
where it should be noted that the sum of squares of each 
column of component loadings equals the component's 
eigenvalue, and the sum of squares of each row of component 
loadings equals that variable's communality.  In the factor 
analysis in this research, we identified the factor loadings from 
the data set.  Once factors are identified we determine a set of 
new common factors fr1, fr2, ..., which are linear combinations 

of the original factors and which are uncorrelated with unit 
variance.  In this way, the new set of factors also satisfy the 
factor model. The method used for obtaining the new set of 
factors is called an orthogonal factor rotation, whose objective 
is to obtain some meaningful factors so that the factor structure 
is simplified.  Several different techniques for orthogonal 
factor rotation are discussed in a number textbooks[9,10].  In 
our research, we use the most popular rotation schemes, which 
is Kaiser's Varimax procedure to get the factor loadings.  The 
Varimax rotation attempts to simplify the columns of a factor 
matrix.  The rotation attempts to have each column consist of 
either ones or zeros.  Only a subset of columns from original 
factor pattern is selected for rotation.  The selection criterion is 
generally based on the eigenvalues corresponding to columns 
in our case, we choose the two columns of the original factor 
loading matrix F with the largest two eigenvalues for rotation 
purposes, which is denoted as F’.  Then we can obtain the 
transformation matrix from initial loadings to the final 
loadings: 
 
 T=R-1 * Fr 
 
where Fr  is the matrix of rotated factor loadings. 
 
For each image, a raw data vector of three or four clutter 
metrics is input to the factor analysis.  This raw data vector is 
converted to a new standard score vector, Z.  Then T is used to 
map a matrix of standardized clutter metrics, Z, onto the 
identified orthogonal factor dimensions. Thus the relative 
clutter, Cr, can be represented as follows: 
 
 Cr = Z*T*LT 
 
where L is a vector of eigenvalues associated with the specific 
factor dimensions.  As mentioned above each eigenvalue is the 
sum of squares of each column of component  loadings.  The 
i’th entry of Cr represents the relative clutter of the i ‘th image 
in the image set.  Following are the tables resulting from such a 
procedure. 
 

 



TABLE I 
CLUTTER METRIC VALUES FOR THE INFRARED IMAGES 

 
der poe schmieder mean_bkg std_bkg 
188 0.001 19.001 3.797 0.251 
174 0.001 19.204 4.353 0.238 
166 0.003 22.004 2.921 0.323 
163 0.000 15.581 3.620 0.307 
159 0.004 19.428 2.955 0.375 
278 0.002 15.743 3.450 0.421 
288 0.003 17.071 3.456 0.204 
322 0.004 15.204 3.462 0.231 
334 0.005 15.967 3.707 0.295 
334 0.004 15.770 3.584 0.204 
333 0.003 15.432 3.388 0.425 
338 0.000 15.497 3.558 0.218 
333 0.000 16.906 4.146 0.223 
481 0.008 19.704 3.724 0.264 
489 0.003 17.695 3.877 0.287 
568 0.005 17.984 3.630 0.553 
337 0.001 21.859 3.155 0.308 
320 0.000 17.502 3.803 0.289 
324 0.001 18.200 3.855 0.283 
347 0.001 21.139 4.092 0.169 
283 0.001 21.468 3.799 0.176 
268 0.000 19.334 4.072 0.231 
270 0.000 19.249 3.310 0.263 
269 0.000 18.694 3.923 0.187 

 
 

TABLE II 
CORRELATION MATRIX AND EIGENVALUES 

 
cor1 cor2 cor3 cor4 cor5 evalue 

1.00000 0.46358 -0.13590 0.17702 0.26165 1.89976 
0.46358 1.00000 -0.09139 -0.29930 0.35570 1.26409 
-0.13590 -0.09139 1.00000 -0.05422 -0.16907 0.94879 
0.17702 -0.29930 -0.05422 1.00000 -0.42302 0.57655 
0.26165 0.35570 -0.16907 -0.42302 1.00000 0.31082 



TABLE III 
 

EIGENVECTOR MATRIX WITH 2 FACTOR LOADINGS 
evect1 evect2 evect3 evect4 evect5 sqre -e 

-0.421649 0.587690 -0.323468 0.200618 -0.576153 1.37832 
-0.579594 0.083017 -0.293059 -0.594919 0.466225 1.12432 
0.206066 -0.343421 -0.879290 0.245661 0.078093 0.97406 
0.360743 0.698451 -0.073790 0.228650 0.569477 0.75931 
-0.560075 -0.204832 0.175752 0.702277 0.346812 0.55751 

 
 

TABLE IV 
MATRIX OF LOADING FACTORS BEFORE AND AFTER ROTATION 

 
load1 load2 load3 load4 load5 rload1 rload2 

-0.581166 0.660750 -0.315077 0.152331 -0.321213 0.071471 -0.877061 
-0.798864 0.093337 -0.285456 -0.451727 0.259927 0.584973 -0.551998 
0.284024 -0.386114 -0.856479 0.186532 0.043538 0.002816 0.479318 
0.497218 0.785280 -0.071876 0.173616 0.317491 -0.867814 -0.332851 
-0.771960 -0.230296 0.171192 0.533245 0.193352 0.756691 -0.276363 

 
 

TABLE V 
NORMALIZED VARIMAX ADJUSTED CLUTTER VALUES 

 
z1 z2 z3 z4 z5 

-1.16666 -0.50987 0.39452 0.40764 -0.32430 
-1.30402 -0.50987 0.48880 1.96582 -0.46864 
-1.38250 0.43143 1.78916 -2.04733 0.47512 
-1.41193 -0.98051 -1.19378 -0.08840 0.29747 
-1.45118 0.90207 0.59282 -1.95205 1.05248 
-0.28369 -0.03922 -1.11854 -0.56482 1.56323 
-0.18559 0.43143 -0.50180 -0.54800 -0.84615 
0.14798 0.90207 -1.36886 -0.53119 -0.54637 
0.26571 1.37272 -1.01451 0.15542 0.16423 
0.26571 0.90207 -1.10600 -0.18928 -0.84615 
0.25590 0.43143 -1.26298 -0.73857 1.60764 
0.30495 -0.98051 -1.23279 -0.26215 -0.69071 
0.25590 -0.98051 -0.57843 1.38571 -0.63519 
1.70789 2.78466 0.72100 0.20306 -0.17996 
1.78638 0.43143 -0.21201 0.63184 0.07541 
2.56143 1.37272 -0.07779 -0.06037 3.02884 
0.29514 -0.50987 1.72182 -1.39155 0.30857 
0.12836 -0.98051 -0.30164 0.42446 0.09762 
0.16760 -0.50987 0.02252 0.57019 0.03100 
0.39325 -0.50987 1.38744 1.23438 -1.23476 
-0.23464 -0.50987 1.54023 0.41325 -1.15704 
-0.38180 -0.98051 0.54917 1.17833 -0.54637 
-0.36218 -0.98051 0.50969 -0.95716 -0.19107 
-0.37199 -0.98051 0.25194 0.76076 -1.03490 

 



TABLE VI 
RELATIVE CLUTTER 

 
ZT1 ZT2 REL_CLUT 

-0.42463 0.88434 0.60806 
-1.37753 0.47970 -1.58943 
1.72671 1.95051 5.79679 
-0.08705 0.75668 0.98251 
1.99011 1.35752 5.35337 
0.94522 -0.14882 1.35949 
0.05803 0.07916 0.21512 
0.24005 -0.59225 -0.48137 
0.30234 -0.99414 -0.97635 
-0.08033 -0.66320 -1.12316 
1.15835 -0.61286 1.02421 
-0.53288 -0.13498 -1.09276 
-1.42189 -0.45552 -3.05795 
0.55108 -1.70340 -1.61764 
-0.34047 -1.50341 -2.81104 
1.57812 -2.26580 -0.73788 
0.88103 1.00216 2.96807 
-0.51905 -0.02833 -0.91060 
-0.47705 -0.13306 -0.99648 
-1.34290 0.08252 -2.12365 
-0.78055 0.78481 -0.13580 
-1.14966 0.36760 -1.37533 
0.24164 1.03845 1.95249 
-1.13869 0.45230 -1.23070 

 
 

As mentioned earlier, the focus of this paper is the different 
ways to determine how many loading factors to use in the 
computation of relative complexity.  Following are the 
different ways in which the number of factor loadings can be 
chosen: 
 1. The number of loading factors can be based on the 
number of eigenvalues that are greater than unity from the 
correlation matrix.  In this case we find from Table II that there 
are two eigenvalues that are greater than unity hence two factor 
loadings are to be used.  From Table II these values are 1.89 
and 1.26. 
 
2. The number of loading factors can be also be based on the 
number of ratios of the eigenvalues that are less than 10.  
Arrange the eigenvalues of the correlation matrix in ascending 
order, of λ1, λ1 , λ3 ,... λn , and determine the ratios as follows; 
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The other ratios are less than 10 also., so all eigenvalue ratios 
are selected and therefore five factor loadings are to be used by 
this method.   
 

 3. Determine the number of factor loadings by 

considering the ratios; λ
λ

λ
λ

1 2

i i∑ ∑
, ,....  For the example under 

consideration these ratios are, 
189

5
0 38

126

5
0 25

.
. ,

.
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sum is given by ∑=5.  If the ratio is greater than 0.1, the 
“normal factor”, then we select that ratio.  For the case under 
consideration we now get four factor loadings.   
 
 4. Determine the average of eigenvalues and use this 
number in the denominator of method (3), such as  
 

 
λ

λ λ λ
1

1 2+ +... n

n

 

Which for this case gives a value of unity in the denominator 
so all are greater than 0.1, so five factor loadings are to be 
chosen. 
 
 5.Method (3) with a geometric average of eigenvalues 
in the denominator, such as,  
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which for the present case gives 1.6 and 1.1 as the two ratios 
greater than one, hence two factor loadings are chosen. 
 
 6. Use the quadratic average in the denominator of 
method (3), 
 

 
λ

λ λ λ
1

1 2* *...* n
n b g. 

 
 
For the present case this ratio gives 5 ratios greater than one 
hence 5 factor loadings should be used. 
 
 The result of the six methods for selecting the number 
of factors above give 2 occurrences of 2 factors and 2 for 5 
factors, and 1 occurrence of four factors.  Since using 4 and 5 
factors is very unusual, they shall be discarded and the 2 factor 
solution chosen. 
 
 

III. Algorithm for the Probability of Detection 
 

 In recent papers, Rotman et al. [14], Gerhart et al. [15] 
and Meitzler [16] review the classical NVL model and others, 
for computing the probability of detection, Pd  and suggests a 
way to include clutter in the algorithm for Pd  .  However, no 
mention is made of how to compute the properly scaled clutter 
factors alluded to in the text of the papers.  We suggest a 
method for obtaining clutter factors based on other validated 
clutter measures that can be used in this equation.  The 
probability of acquisition of a target as a function of time is 
given by, 
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In (5), 
 ρ = an estimate of target acquisition probability over 
an infinite amount of time when the target is in the field of 
view.[15].   

 ρ =
+

( / )

( / )

n n

n n

E

E
50

501
   (6) 

where, 
 n= the number of resolvable cycles across       the 
target 
 n50= the number of cycles required for P∞          to 
equal 0.5 
 E = 2.7 + 0.7 (n/n50) 
 CF = a clutter factor. 

 
In [14] it is shown that, 
 

 
n

n

T
MRT

R

s
R

atm

sys
50

0

7
F
HG

I
KJ=

−
L
NM

O
QPln /Δ ε β

γ β
. (7) 

 
Hence (5) can be written as a function of ΔT and the clutter 
factor, relative or otherwise.  Or, the probability of detection 
P(t), can now be computed as a function of ΔT, range from 
target to sensor, atmospheric condition, and sensor system 
parameters.  In the following section we give results for the 
NVL terrain board images and our relative clutter measure. 
 

 
 

IV. Probability of Detection Results with Relative Clutter 
 

 Equations (4) through (7) were computed using a 
relative clutter measure for the clutter factor in a spreadsheet.  
The results are shown in graphical form below in Fig.’s 1 and 
2. 
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Fig. 1 Pd versus Delta T 
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Fig. 2 Pd versus clutter 

 
As discussed in [15], the effect of ΔT quickly approaches an 
asymptotic value.  The results in Fig. 2 show how quickly 
clutter effects the Pd.  Below in Fig. 3 is one of the images 
used in this study, 
 

 



 
 

Fig. 3  Night Vision Laboratory Terrain board image 
courtesy of Dr. Barbara O’Kane 

 
 

V. Conclusions 
 In this paper a new metric, the relative clutter metric, 
has been proposed for aggregating many diverse clutter 
metrics.  The new relative clutter metric has been used in the 
computation of the probability of detection.  Different methods 
for objectively selecting the number of factor loadings has been 
suggested.  Future papers will show how to assess the 
perceptual worth of the various clutter metrics based on 
statistical signal detection theory, experimental psychophysical 
tests, and validated visual perception algorithms[7,8]. 
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